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J. Phys. A: Math. Gen. 19 (1986) 3727-3739. Printed in Great Britain 

Weyl field strength symmetries for arbitrary helicity and gauge 
invariant Fierz-Pauli and Rarita-Schwinger wave equations 

Noel A Doughty and  David L Wiltshire? 
Physics Department, University of Canterbury, Christchurch, New Zealand 

Received 28 October 1985 

Abstract. The algebra of the restricted Lorentz group and the Weyl formulation of massless 
Poincari irreducible fields have been developed by primarily Lorentz-covariant Pauli matrix 
methods which facilitate the generation of both indexed Weyl spinor identities and Dirac 
identities. The results have been used to display a complete set of symmetries for the 
(anti)self-dual Weyl field strengths of arbitrary helicity j (  3 1). These symmetries and the 
requirement of Poincari irreducibility have then been used to give a direct and uniform 
determination of the forms of the gauge invariant (Lagrangian) free field wave equations 
for the Fierz-Pauli and Rarita-Schwinger potentials of spin 1, 3 and 2. The procedures 
set out indicate that it should be possible to establish the gauge invariant Lagrangian free 
field wave equations of arbitrary helicity in a uniform and direct manner from the corre- 
sponding much simpler equations governing the field strengths in unmixed spin representa- 
tions. 

1. Introduction 

Fields which transform according to irreducible representations D ( j , ,  j,) of the restric- 
ted (inversion-free) Lorentz group SO;, are customarily manipulated (van der Waerden 
1929, Corson 1953, Penrose 1960, Misner er a1 1973, Penrose and Rindler 1984) by 
expressing their components as explicitly indexed Weyl spinors 4'A,A, A 2 , 1 L ,  L / 2 1 1  

( A , ,  A,,  . . . , U , ,  U,, . . . = I ,  2) which have complete symmetry on all undotted and 
complete symmetry on all dotted (complex conjugate) indices with indices raised and 
lowered using the antisymmetric bispinors ( ) = (-; A) and their negative 
inverses = ( e L L )  = (-: A). Many of the corresponding results for the rotation 
group, SO,, and the full Lorentz group 0, ? ,  make use, on the contrary, of primarily 
matrix methods of the Pauli algebra on the one hand (Pauli 1927, Salingaros 1981, 
Salingaros and Ilamed 1984) and the Dirac algebra (Dirac 1928, Itzykson and Zuber 
1980, van Nieuwenhuizen 1981) on the other. While, for many purposes, the indexed 
Weyl spinors and the Pauli-van der Waerden symbols ( T ~ ~ ~  (Corson 1953, Pirani 1965, 
Misner et a1 1973, Penrose and Rindler 1984) are a powerful tool intimately linked to 
Lorentz irreducibility, in some instances matrix manipulations provide a complemen- 
tary insight into the significance of the many identities involled. They can also appear 
less forbidding than the spinor-indexed counterparts. 

We extend here the partly matrix treatments of Barut ( 1964), Lord (1976) and Wess 
and Bagger (1983) by supplying, in B 2.1 and the appendix, a more extensive list of 
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Lorentz-covariant Pauli identities in matrix form. In 0 0  2.2 and 2.3 we present Weyl’s 
equations (Weyl 1928) in covariant Pauli matrix form and establish, ab initio, the 
properties of the two-component charge conjugation matrix in an  arbitrary unitary 
representation of the Pauli algebra. We then apply some of these identities, in 00 3, 
4 and 5, to the Weyl fields of spin 1, $ and 2 to systematically and  uniformly set out 
the relationships between the completely symmetric Weyl spinors and the corresponding 
gauge invariant tensor or tensor-spinor field strengths of the Maxwell, Rarita- 
Schwinger (gravitino) and Fierz-Pauli (graviton) fields. We then extend these spin 1, 
5 and 2 cases in § 6 to display the corresponding relations for the arbitrary spin Weyl 
fields and  give a complete set of symmetries for the tensor and tensor-spinor field 
strengths confirming those given by Weinberg (1965) and Rodriguez and Lorente (1981, 
1984). Finally, in § 7, we use the requirement of PoincarC irreducibility to provide a 
uniform direct determination and comparison of the gauge invariant Lagrangian field 
equations for the free field Fierz-Pauli and Rarita-Schwinger gauge potentials A, ,  $, 
and h,”. A procedure for forming indexed Weyl spinor identities and for relating 
covariant Pauli and Dirac matrix identities is briefly outlined in the appendix. 

3 

2. Pauli identities and Weyl’s equations 

2.1. Covariant Pauli algebra 

We let uk, k = 1,2 ,3 ,  be the generating elements of any unitary matrix representation, 
akL = gk,  of the Pauli (Clifford) algebra with identity aha‘ = i&h’md“‘ + 6“U (aka‘+ 
a‘g’ = 26“)  (Clifford 1878, Pauli 1927, Salingaros 1981, Salingaros and Ilamed 1984). 
With the Minkowski matrix ( 7  ) = diag(+l ,  -1, -1, -1) we define invariant SOT,3 
Pauli elements 2 ={I, a k }  and a, = ~/,,,&’’ with their parity conjugates 3‘ ={U, -ah} 
which, although they contain the same SO3 Pauli elements ah as do  6, ={I, ak} = 
{U, -ak} ,  require a separate definition due to the level of the index p. 

We de$ne theiinvariant (anti)self-dual ‘tensor’ sets of Pauli elements GI1” = 
1 -  3i(gI1G” - a’;”) = aput which form direct and natural SO;, extensions of the SO3 dual 
ak‘ = e k l m a m  =$[ak(-a’) - a’(-ak)]  of am. Normalising the permutation symbol 

algebraic manipulation the identities listed in the appendix. Equation (A13) in par- 
ticular shows that +&&” each satisfy the Lie algebra s o ( l , 3 )  of the restricted Lorentz 
group. An evaluation of the Casimir invariants M’ and N 2  of the two su(2) subalgebra 
generators M = f(S+ i K )  and N = &(S - iK) ,  where S k  = $ E ” ~ S “  and K = SOm gener- 
ate the rotations and boosts, shows that @-‘” and 4 2 ”  generate, respectively, the D ( &  0) 
spin-; irrep of SOT,, and the conjugate D(0,  I) irrep. The SO;, invariants 6 ,  may, of 
course, be referred to as being Lorentz covariant parity conjugates as a result of, for 
example, the 01,3 transformation properties of I+!:2‘$x where I+!- and I+!+ are D(+,O) 
and D(0,:)  fields. 

Y 

& , Y A P  and to &OII;- = +1 = - E 0 1 2 3  we may now establish by straightforward 

2.2. Weyl’s equations of arbitrary spin 

Weyl’s equations for negative and  positive helicity A = * j ( j  3 4) fields I+!- = (xAIA’  
and $+ = ($uj of the D ( j ,  0) and D ( 0 , j )  representations take the form a,$* = 0, 
where B,  = 6&d, .  These are in fact the only first-order, linear, restricted PoincarC 
covariant (ISO;,,) and parity-conjugate equations for $= separately. The PoincarC 
covariance follows as a consequence of the identities B,B, = 0, where 0 = P a , ,  which 
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give mass irreducibility (with mass zero) and the demonstration that $, are indeed 
spin-j fields. The latter is a consequence of their transformation properties as sym- 
metrised products of 2j factors of D(4,O) or  D(0,  i) spinors. Indeed, substitution of 
S+" into the Pauli-Lubanski spin 4-vector W+ = - ~ E ~ " h p S s , , P p  gives W"$+ = 
*f( T~~ - g"G")Py$,  . Since the helicity operator is v / l P o l  = S b whele S k  = ~ E ~ ' " ' S ' ~ ,  
use of the field equations gives S .  b$* = *;E&* for spin 4 and S .  P$+ = *jE&* in 
general, where = +1 applies to positive or negative energy contributions to 4,. The 
fields $, are therefore indeed massless helicity eigenstates and consequently PoincarC 
covariant. Using the Weyl representation of the chiral Dirac matrix y j  = -:), with 
$ = [$:I, the above relations become, in Dirac form, S .  & = j spy ,$  showing that the 
helicity and  chirality eigenstates correspond in the massless case. 

The spin-q fields are obtainable from the Hermitian Lagrangians L ,  = ~i$lTz$* 
but for higher spin ( j  a 1)  the Weyl fields cannot be obtained from Hermitian 
Lagrangians without the introduction of auxiliary fields (Guralnik and Kibble 1965, 
Larsen and Repko 1978). This may be readily seen by using explicitly indexed spinors. 
Consider, for example, the equation a-4- = 0, namely ( ~ z i . d , ~ ~ ~ , . . . ~ 2 1  = 0. Since the 
equation is PoincarC covariant, first order and  linear, a Lagrangian, if it exists, must 
be a real PoincarC invariant bilinear in a,$_ and the adjoint (or Hermitian conjugate) 
spinor 4' and/or in a,$: and $-.. It must therefore be of the form 

A,+ ... AZ, 
iR UI L'?...C L a 2, 0, U>, . .  a +X 

where 
must be Hermitian. Such a Lagrangian has Euler-Lagrange equations 

must be completely symmetric in all undotted and all dotted indices and 

~!ll. 'l~,, A.,L' ,  L ? , ,  L ;2 ,d , *A,Al .  - 0  

which coincide with the original Weyl's equations if and only if j = and = U,. A 
similar analysis applies to the conjugate spinor rL, and to the formalism of Bargmann 
and Wigner (1948) where an  IO,,3 invariant Lagrangian must be sought and the mass 
of the field may also be non-zero. 

2.3. The Weyl charge conjugation matrix 

Following van Nieuwenhuizen (1981 1 for the Dirac case, we establish here the existence 
and properties of the two-component charge conjugation matrix E without reference 
to any explicit representation of the Pauli algebra. The matrices a: or --U: also satisfy 
the Pauli algebra and uh are an irreducible set of matrices. Schur's lemma (Wigner 
1959, Butler 1981) implies, however, that there is only one inequivalent two-dimensional 
representation of the finite (Pauli) group generated by ffk or -fff  and  thus guarantees 
the existence of a matrix E establishing their equivalence, which may be expressed in 
the form E - ' U ~ E  = -g[ implying E - ' & , &  = cp.  - T  Moreover, since E ~ E - ' ~ ~ E ( E - ' ) ~  = crk 
follows by two applications of the equivalence relation, E ' & - '  commutes with all f f k  

and, again by Schur's lemma, is a multiple of the identity. Since E' = kE gives k 2  = 1 
and k = + l  we need only note that ( c T ~ E ) ~  = -kakE to conclude that k = -1 since 
otherwise three of the four linearly independent 2 x 2 matrices P and UkkE would be 
antisymmetric which is impossible. Consequently, E is antisymmetric and f f k &  sym- 
metric. It also follows directly that E C ' & + ; , E  = -vPv.  = T  Application of Schur's lemma 
again shows that E - E  is a (positive) multiple of the identity allowing E to be normalised 
to make it unitary. Finally, provided we choose representations in which each uk is 
either symmetric or  antisymmetric, then a further application of Schur's lemma 
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establishes that E *  can be chosen proportional to the identity, thus permitting the phase 
to be chosen so that E is real and  orthogonal. Analogously to the Dirac case, we see 
that, while E is antisymmetric, and up”& are all symmetric. We therefore have the 
following representation-independent charge conjugation matrix properties: 

N A Doughty and D L Wiltshire 

E T  = - &  E + E = ~  (1) * T  = -up” ‘T 
E - % p &  = u p  

whose solution is E = e’@(-: A) with 6 a real phase and  the representation-dependent 
results 

( 2 )  T 
E = & *  ( * E  = --E-’, E & =U) 

whose only solutions for E require 6 = 0, T. Apart from always assuming a real charge 
conjugation matrix we shall never require an  explicit representation of the elements 
uk of the Pauli algebra. However, if we choose the standard Pauli matrices 

0 ’ = ( 1  0 1  0) u2=(; -;) U 3 4 1  0 -1 0) (3) 

to represent uk, then since they are each either symmetric or antisymmetric we are 
guaranteed the existence of a real charge conjugation matrix which is conventionally 
taken to be E = iu’ = (-: A) (the only other real orthogonal antisymmetric choice being 
- i d ) .  

Finally, to justify the name ‘charge conjugation matrix’, we note that if $+ were a 
right-handed D(0,  i) spinor of charge y coupled minimally to some 4-vector or pseudo- 
4-vector field Ap according to ( id++ q&$+ = 0, then it follows that CL- = (I,+)canl = E$$ 

will satisfy (id. + ( - q ) K ) I , .  = O  with the sign change q to -q indicating that 9- will 
be oppositely charged. Similarly, the identity E - ’ & ~ ~ E  = -up” will ensure that I,- 
transforms by D(& 0) if $+ transforms by D(0,  ;). A Weyl particle cannot be electrically 
charged but a similar argument will apply to any other charge such as lepton number 
for neutrinos for example. 

We next apply the covariant Pauli matrix identities successively to the spin-1, 5 
and 2 Weyl.spinors to determine the properties of the corresponding tensor and  
tensor-spinor field strengths. 

f T  

3. Spin 1: Maxwell field 

Let II, = ( X I ’ )  and 4,  = (&,,) be symmetric matrices representing D (  1 , O )  and D(0,  1 )  
spinors each with three independent complex components. We form the complex 
tensors 

FL U’  = i T r ( $ t & z ’ G p ,  1 (4) 
I -  V M T  1 -  I -  t L‘l (one of which would be FZ,  = - a # c  \ .F vU, - - ~ 4 ~  ,,crp, in spinor-indexed 

notation). Equations (A121 and (A151 ensure the antisymmetry and (anti)self-duality 
of f z,, namely FFpI = FZ,  and iFz, = *FE,  where the dual is kp, = $ E ~ , ~ ~  FAO leaving 
each with three complex components. These symmetries and identities (A23) establish 
the inverse relations 

( 5 )  
demonstrating that CL; and f ;, contain the same information and thus showing that 
we have all the symmetries of FLY.  Equation (A19) provides the dependent symmetries 

cl, =If= &PI t l  * 2 pL E 

;T”’ f ;L = 0. 
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* t  = From upv = up” and (G@”E)’  = Gpu& we find that the conjugate E$?&’ of the spin-1 
spinor $+ is related to the complex conjugate of FLY according to E $ ? E ~  =;FL:&‘”E-’, 
in the same way that 4- is related to FLZ,. Consequently, if $, are mutually conjugate, 
$- = E $ T E ~ ,  then FEy are complex conjugates and Fpy = FLv+ FZy is a real tensor 
from which I+!J* may be retrieved, using &pYFzy=O, in the form 

( 6 )  * * U  r l  $l=iF,yu  E . 
Fp therefore transforms 01,3 irreducibly according to the real SOT,, reducible 

representation D( 1,O)O D(0,  1). The field equations for FZu are determined by noting 
that equation (A14) gives a’“F;, =a i  Tr[ETl(ay$l - ;”d*$*)] which vanishes by the 
antisymmetry - of E * ’ ,  the symmetry of $, and the Weyl equations, giving apF; ,  = 0, 
P F , ,  = 0 = a’*Fpv and U FWy = 0. Thus F,,, clearly has all the properties of the free 
Maxwell field strength, namely those of the unique real non-Lagrangian irreducible 
Poincari representation of helicity 1. 

4. Spin $: massless Rarita-Schwinger field (gravitino) 

9- = ( , yABC)  and $+ = ($uviv) are now taken to be completely symmetric D(;, 0) and 
D(0,  ;) Weyl spinors, each with four independent complex components. We form the 
antisymmetric (anti)self-dual tensor-spinor field strengths: 

(7) f *  =‘T . ,” 4 r(+*E up) 

$ * = ; f ; Y O & p Y E * l .  (8) 

with inverses 

Now &p”f:y = Tr(&pu@ f tV)  = 2 Tr( $ , E = ’ )  = 0 where we have used the complete sym- 
metry of $* and identity (A25). This leaves four independent components in each f z y  
and shows that we have found a complete set of symmetries. An important dependent 
symmetry may also be established: 

&pyfiu = j--iEpY’p&pjtp by (anti)self-duality 

by (A161 = ;( 77 oA&f - 77 YP&A - i & v & A p )  f rP 
= -&’y ‘u  

which must therefore vanish. 
One may now establish that 

(9) fC”l=f;” if;” = *f ;” (7 f p Y - O  

fG.I=f;” & p f ; ” = O  (10) 

* - 

and 

are alternate complete sets of independent symmetries for f Z Y .  The Weyl equations 
now show that a* f:“ = 0 =ap]:,, analogously to Maxwell’s equations. A direct sum 
can also be used to construct the Dirac tensor-spinor field strength 

f,” = [ 3 
of the spin-; field of Rarita and Schwinger (1941). With a self-conjugacy condition, 
fiV = .sf:,* or f p y  = CfTVfy) this becomes a Majorana tensor-spinor appropriate to a 
gravitino field strength (Majorana 1937, van Nieuwenhuizen 1981). 
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5. Spin 2: massless Fierz-Pauli field (linearised gravity) 

One new feature occurs at spin 2, after which it will be possible to formulate the 
arbitrary spin case. Let $- = ( x A B C D )  and $+ = ( C $ ~ " W * )  be completely symmetric 
Weyl spinors transforming as D(2,O) and D(O,2) irreps of SOT,,. We form the complex 
tensors 

C:,,, = A  Tr(Tr($?ET'&,")ET'&,,) (11) 

$* =ac;,,,u *," E * I  0 6 - ^ P E i ' .  

c : u A p  = C ; t ~ v ] [ h p ]  = c:p,u 

with inverses 

(12) 

The symmetries and duality properties 

iC&, = iCEuG = ~ C ~ , , ,  (13) 

leave each C;,,, with six complex components, compared with five for each $*, 
showing that one complex constraint remains to be found. Using (A14) and the complete 
symmetry of $* we obtain 

C::, = A  T r ( T r ( $ * E T ' ~ , ~ , ) E ~ ' ~ , 6 ~ ) .  

Careful use of (A1 1) now shows that C:iu = 0, which, on using the symmetries and 
duality properties, can be reduced to the single independent symmetry C;,v,,pl = 0, 
which is the one remaining constraint required. 

conjugate to $+ one may obtain a self-conjugate reducible 
representation D(2,O)O D(O,2) of SOT,3 in the form of the real 01,, irrep C,",, = 
C;,,, + Czvhp ,  having as a complete set of symmetries 

With 9- = E (  E $ $ &  T ) ~  

C p u h p  = C [ p v ] [ h p ]  = c A p p u  CA,,, = 0 C [ p h v p ]  = (14) 

which are, of course, precisely those of a Weyl (or vacuum Riemann) tensor. CFVAp 
is the gauge invariant field strength of the spin-2 massless field of Fierz and Pauli 
(1939) applicable to a linearised description of gravity (Weinberg 1972, Misner et al 
1973). The symmetries & p Y C ~ y h p  = 0 show that each $, can then be obtained from 
CFuhp according to 

(15) $* =&hpu *,U E * I  O P E " .  

From a,$, = 0 we deduce apC;,,, = 0 and hence a T p u A p  = 0, d"C,-,,, = apCpUG = 0 
and finally 0 C,uAp = 0 confirming the PoincarC covariance of CPvA,,. 

6. Spin j 

Making use of the previous lower spin results it will now be possible to simply write 
down the corresponding relations for arbitrary spin. 

6.1. Integer spin 

$+ = (x"l " 2 1 )  and $+ = (4u, u2,) each have (2j+ 1) independent complex components. 
The tensor field strengths 
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have inverses 

$* = ( f ) 'F; ,  ,2,&@lb&*'@. . *@&,2,-1,2,&*' (17) 

showing that each contains the same information. FZ, ,2, are clearly antisymmetric 
and (anti)self-dual on each successive pair of indices and symmetric on permutations 
of the pairs, leaving each with ( j  + 1)( j + 2 ) / 2  independent complex components, which 
shows that a further j ( j  - 1)/2 independent constraints exist for each. Provided j 2 2 ,  
the trace on any pair of indices, each from a different antisymmetric pair, vanishes: 

F * A p 2  A ~ 2 , = ~ *  

This reduces to F:LvApl = 0 and hence to Ff,vApl = 0 using the earlier symmetries and 
thus we have the remaining j ( j  - 1)/2 constraints and a complete independent set. 

As in the spin-1 and 2 cases, &,'F:, = O .  Hence a real D(j,O)OD(O,j)  tensor 
F P 1  ,2, = FL1 ,2, + F:l ,2, can be formed from the mutually conjugate I+++ which can 
be retrieved by 

(18) 

A complete independent set of symmetries for F, ,  ,2, is antisymmetry in each 
successive pair, symmetry under permutation of the pairs, tracelessness across pairs 
and a vanishing completely antisymmetric part on, for example, the first four indices, 
FCgvApl  =0,  with FcPLVAlP = O  a useful dependent symmetry. The Weyl equations 
establishing I++, as PoincarC irreps similarly imply that 

+* = ( $ ) J F F I  , 2 , & , ~ * 2 ~ * ' @ .  , . @ & , 2 , - 1 , 2 1 & * ' .  

apF:,A, = 0 afiF%Ap = a,F;,,,-, = ... = 0 (19) 

and consequently dc,F:Al = 0 and 0 F:l ,2, = 0 with similar results for the real field 
FPI W 2 , '  

6.2. H a y  odd integer spin 

We write j = n +f with n integral (5 0) and define tensor-spinor field strengths by 

(20 )  
= I *  fz, , 2 , ,  = W..  . T ~ ( T ~ ( I + + , E I ' ~ ~ ~ , ~ ) & ~ ' & , ~ , ~ ) .  . . ~ , 2 , , - 1 , 2 , ,  

with inverses 

(21) 

The tensor-spinors f;, ,'2,, satisfy the same tensor index symmetries as those in the 
integer spin case, which reduces the number of independent complex components for 
each value of the spinor index to 2 n  + 1 for each value of the spinor index or 2(2n + 1) 
in all, indicating that f z y  satisfy a further 2 n  complex conditions each. As in the spin-; 
case these final independent spinor trace symmetries are &""f:y = O  which, with the 
tensor symmetries, give a complete set. These symmetries and the duality properties 
may be replaced by the spinor trace conditions i?'f,'y = 0 to give an alternate complete 
set of independent symmetries. The Weyl equations imply field equations similar to 
those of the integer spin case. 

The symmetries displayed here for the Weyl field strengths of arbitrary spin 
correspond to those given by Rodriguez and Lorente (1981, 1984) using the Dirac 
formalism, for chiral and (anti)self-dual Bargmann- Wigner fields. 

$* = (i) l f l *  f,, , > , a @ & , l ~ 2 & * ~ @ ,  . . @ & b I b ' & * ' .  
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7. The gauge invariant Lagrangian wave equations of spin 1, and 2 

A further advantage of the procedures we have developed in the preceding sections 
is that they permit one to determine, directly and uniformly, from the PoincarC fields 
based on the unmixed Lorentz representations, the form that must be taken by the 
free field Lagrangian wave equations for the mixed Lorentz representation spin-1, 3 
and 2 gauge potentials A,, $, and h,, in order for them to irreducibly represent the 
PoincarC group. The Maxwell, Rarita-Schwinger and Fierz-Pauli field strengths FFY) 

f,” = [ 3 
and CPvAp have full ( PoincarC covariance (including inversions). Since they are 
equivalent to the potentials, modulo gauge freedom, the wave equations for the latter, 
obtained by integration using the PoincarC lemma (Spivak 1965, Brittin et al 1982), 
will also be Poincard covariant. 

One application of the lemma to Fpy establishes the existence of the potential A, 
satisfying Fpy = a,A, -a,& and the wave equation OAP - 8 8  A = 0. For comparison 
with j = and 2, we recall that this equation is invariant under the gauge transformation 
SA, =a,& ( 6  a scalar field), has an identically divergence-free left-hand side (which 
on the field strength takes the form of the source constraint d,a,F’I” = 0) and is derivable 
from a Hermitian Lagrangian, facilitating coupling to other fields with conserved 
currents. 

We now note that, by using Dirac matrices in the chiral representation, 

the spin-; Weyl symmetries = 0 become the gamma trace symmetry y”fPY = 0. 
Application of the lemma to the spin-5 field strength f,” establishes the existence of a 
vector-spinor potential $, which satisfies f F Y  =a,$” -a,$, and, from a, f p w  = 0, the 
second-order wave equation 0 $, - a,a $ = 0. However, the trace condition y’fWY = 0 
supplies the basic first-order equation on I), (from which the second-order equation 
follows but not vice versa), namely a$, -a,? - $ = 0, as required for a positive definite 
probability density and consistent second quantisation of a fermionic field. The 
second-order equation and its y contraction 0 y * $ -aa * $ = 0 are differential con- 
straints on $, that only apply on-shell. In the original discussion of the spin-; field 
(Rarita and Schwinger 1941), invariance under the fermionic gauge transformation 
S$, = a p e  with E a spin-f spinor field was noted as a property of the wave equation. 
This is also true for the above equation, surely the simplest of the many free field 
forms of the Rarita-Schwinger equation for the gravitino or supersymmetric partner 
of the graviton in supergravity theory (Freedman and van Nieuwenhuizen 1976, van 
Nieuwenhuizen 1981). 

However, in constrast to the spin-1 case, the above equation, a$, -d,y 4 = 0, 
does not have an off-shell divergence-free left-hand side and consequently cannot be 
derived from a gauge invariant action with Hermitian Lagrangian. This off-shell 
requirement on the variational derivative S L / S $ ,  = aL/a$, - a A  aL/aa,$, (whose 
vanishing gives the Euler-Lagrange field equations) is established by considering a 
variation of the action, SS = d4x(SL/S$,)6$,. Use of an arbitrary variation would 
now establish the field equations. Instead, one may use the presumed gauge invariance 
of the action ( S S  = 0 under S$, = a,&) and integration by parts, discarding a surface 
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term, to obtain d4x(dp(6L/S~,)).5 = 0, and  consequently the off-shell necessity of 
a ,  ( S L /  S+, )  = 0 for the field equations SL/ 84, = 0 to be derivable from a gauge invariant 
action. Clearly the same argument applies to the spin-1 potential A, and to certain 
other gauge potentials with additional (internal or external) indices such as the 
Fierz-Pauli hpv,  general metric tensor g P y  or Yang-Mills fields B, = (B; ) .  

Finally, two applications of the PoincarC lemma (Pirani 1965, p 279) to Cpvhp 
establish the existence of the spin-2 Fierz-Pauli potential h,,, in terms of which the 
field strength is a double covariant curl C,,,, = 2d[uh,l[h,pl. The Fierz-Pauli equation 
of second order for h,, arises from the trace condition on the field strength CWvhp: 

2 C A + , , , ~ 2 R ~ , ~  -Oh,,+2aAa,,h,,, -a,a,h = O  ( 2 2 )  

where h = h,,. The first-order equation on the field strength dlLC,y,,p = 0 and its 
contraction, dPChpAv = 0 or a,(aAaPh,, -0 h )  = 0,  become on-shell differential con- 
straints on h,”. As in the spin-; case, this linearised Ricci form of the spin-2 equation 
(Fierz and  Pauli 1939, Misner et a1 1973) is invariant under the gauge transformation 
ah,, =a,(,, +a&  but, as we have seen, does not have an  off-shell divergence-free 
left-hand side and hence cannot be derived from a gauge invariant action nor coupled 
to a conserved source such as the matter or total energy-momentum tensor. 

In order to see the need to self-couple in both the spin-: and 2 cases and, in the 
case of spin 5, to also couple to the spin-2 field supersymmetrically in order to achieve 
full consistency (Deser 1970, 1980, Boulware and Deser 1979) it is clearly necessary 
to achieve linear off-shell divergence freedom first. This may be achieved without loss 
of either gauge invariance or  PoincarC covariance by subtracting from each equation 
a multiple of their own (on-shell vanishing) trace, namely fy, times the spinorial trace, 
2(d 9 $ - a y .  $), and $vrY times the tensorial trace, 2(d”aPh,, - O h ) ,  respectively. The 
results are the standard Lagrangian forms of, firstly, the massless Rarita-Schwinger 
equation, 

a+, -- d,y .  + - Y,a . + + y,a y .  + = o (23) 

which has a great many other alternative forms (Freedman and van Nieuwenhuizen 
1976, Wiltshire 19831, and  the Einstein form of the Fierz-Pauli equation of spin 2 :  

2G:, -Ch,, +2aAd,.h, ,A  - d , d , h +  v P b I h  - v r L d i J p h A p  = O  (24) 

where G:, is the linearised Einstein tensor. Each of these free field equations is 
equivalent on-shell to the slightly simpler equations from which they were obtained 
by tracing. Off-shell, only the modified equations, of course, have the desired properties 
of being gauge inbariant Lagrangian fields which guarantees their suitability for 
coupling to conserved sources or alternatively their consistent (path-independent) 
propagation (Hojman er al 1976). The identically vanishing divergence of the left-hand 
side of these equations constitute source constraints on 4, and h,, , respectively, which 
can be re-expressed in terms of the field strengths, for comparison with d , ( d , , P ’ )  = 0, 
as 

y t (8 . f , ,  ) - ; d Y ” ( Y y ,  ) S O  ( d r C A p A ~  ) - ; ( d , C * ’ A p )  E 0. ( 2 5 )  

The parentheses enclose factors whose vanishing by (contracted) field strength proper- 
ties is not of course required for the validity of the identities. 
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The extension of the above procedures to establish the gauge invariant Lagrangian 
wave equations for the helicity 2 potential is straightforward. It is also clear that, with 
appropriate generalisation, the method ought to be applicable to the arbitrary helicity 
field strengths established in § 6 to give a uniform and direct method for establishing 
the free field Lagrangian wave equations of Fronsdal (1978) and Fang and Fronsdal 
(1978), which have also been displayed in a somewhat different form by de  Wit and  
Freedman (1980), Berends et al (1985a, b)  and  Burgers (1985), and in the fermionic 
case, in particular, by Aragone and Deser (1980a, b )  using a vierbein formalism. This 
extension to arbitrary helicity where new effects arise, such as doubly traceless potentials 
for s p i n 2 4 ,  will be discussed in subsequent papers (Doughty and  Collins 1986a, b, 
Collins and Doughty 1986). The first of these papers also comments on the applicability 
of our formalism to the massive case. 

8. Conclusion 

We have demonstrated how a great many of the properties of chiral and  (anti)self-dual 
Poincart fields may be formulated using primarily Pauli matrix algebra in an arbitrary 
unitary representation. I n  particular, for spin 5 1 one may very simply convert bosonic 
and fermionic Weyl spinors satisfying Weyl's equations into corresponding (anti)self- 
dual tensors and tensor-spinors to establish complete sets of symmetries for both of 
the latter. Furthermore, the procedure for establishing these symmetries may be carried 
out by methods which are essentially identical for all spins j .  The differences are 
simply those which distinguish bosonic from fermionic fields and the high spin ( j  > :) 
from the low spin cases where some of the symmetries are vacuous. 

The systematic treatment of all spins has permitted a uniform derivation and direct 
comparison of the features of the gauge invariant wave equations and souce constraints 
for the spin-1, and 2 Lagrangian gauge potentials of Maxwell, Rarita-Schwinger and 
Fierz-Pauli. It also strongly suggests that such a direct relation between, on the one 
hand, Weyl spinors and their equivalent tensor or tensor-spinor field strengths and, 
on the other, Lagrangian fields with gauge invariant differential wave equations of 
appropriate (first or second) order, can be established for arbitrary spin. 
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Appendix. Covariant Pauli algebra defining relations and identities 

Many parity conjugate equations, obtainable by interchanging +*- on &p and &p" 

with reversal in sign of terms in E ~ " * ~  or the dual (--), have been omitted. 
Defining relations: 

(AI )  
* -  f 

&g =(I, * u k }  

; p u u  + &U,, = 277/Jy f fW&-Y + = 2 y .  

up = up p. = 0, 1,2, 3 .  

Algebra: 

('42) 
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(A12a) 

(A126) 
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Completeness of uk and hence of &”” for traceless 2 x 2 matrices V: 

V = $5.’” Tr( V6””) .  (A25) 

(i) Dirac identities and indexed Weyl spinor identities. Explicitly indexed Weyl spinor 
identities may be obtained from each of the above matrix identities by consistently 
inserting spinorial row and column indices. For example, to raise and lower spinor 
indices according to ,yA = gABxB and xB = x ~ E ~ ~  (and similarly for dotted indices) 
requires = 6 Rc and we may choose a friendly rep of the Pauli algebra ( E  = E*, 

r 
E’ = - U )  with E = (.sAR) = ( E ~ ~ )  and E = - E - ’  = --E = ( & A B )  = (suV). We now require 
$:&”a $ to be invariant. Consequently we must assign one dotted and one undottted 
index to U” and arbitrarily assign them by taking &” = (U””“) .  Lowering A and U 
gives upBv = U ” ~ ~ E A B E  Uv = ( E - ’ & ” E ) ~ ~  = where in the last equality we have 
used the purely matrix equality from § 2 . 3 .  Thus, for consistency, we must index 6” 
according to (5”) vB = U” Bv leading to 

” Z  

+ p  A l l  + ” - U  A ) ( ( T ” ) U B = u ” A ” u u  B U = ( U  (+ ) B 

and 
W A V  = ( ( T ’ I & U ) ~  V. 

U ’ I A U U  
~ P & Y  = (5”) ( & v ) A V =  

UA 

Finally, as examples of indexing the identities above we list 

(A91 ufiAU U ’ A L ,  = 2 6 ” , ,  (orthonormality of uFAU) 

( A l l )  ( T P A U u f i B V =  2 S A B S U V  (completeness of uPAU) 
- p u A  -1. (A12a) U B - 2 ~ ( ( + ” A U ~ ” B ~ - ~ a Y A U ~ p  B U )  

(A19) V u w v  B = o  
&”U u -  A 

(‘425) ~ . P ” A B ~ p v C D  = -4( GACSBD + S A D s B C ) .  

Dirac identities may be routinely reduced to the above covariant Pauli identities, 
and their extensions, or constructed from them by using the Weyl or chiral representa- 
tion in which 
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